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Abstract—We consider the problem of in-order packet trans-
mission over a cascade of packet-erasure links with acknowl-
edgment (ACK) signals, interconnected by relays. We treat first
the case of transmitting a single packet, in which ACKs are
unnecessary, over links with independent identically distributed
erasures. For this case, we derive tight upper and lower bounds
on the probability of arrive failure within an allowed end-to-end
communication delay over a given number of links. When the
number of links is commensurate with the allowed delay, we
determine the maximal ratio between the two—coined informa-
tion velocity—for which the arrive-failure probability decays to
zero; we further derive bounds on the arrive-failure probability
when the ratio is below the information velocity, determine the
exponential arrive-failure decay rate, and extend the treatment to
links with different erasure probabilities. We then elevate all these
results for a stream of packets with independent geometrically
distributed interarrival times, and prove that the information
velocity and the exponential decay rate remain the same for
any stationary ergodic arrival process and for deterministic
interarrival times. We demonstrate the significance of the derived
fundamental limits—the information velocity and the arrive-
failure exponential decay rate—by comparing them to simulation
results.

Index Terms—Packet erasures, error exponent, information
velocity, multi-stage queues.

I. INTRODUCTION

Wireless communications technology is gradually shifting

toward working over distributed network topologies of in-

creasing numbers of smaller-size units, to allow lower energy

consumption, reduced delay, and ubiquitous connectivity.

Examples of such communication technologies include the

following. Cellular vehicle-to-everything (C-V2X) is gaining

prominence in fifth generation (5G) cellular technology and

will play a major role in future generations [1]. For applica-

tions such as emergency vehicle coordination and platooning,

C-V2X requires highly-reliable packet transmission with low

latency. In addition, C-V2X, including the enhancement of

user-equipment (UE) relaying, needs to support hundreds of

nodes comprising vehicles, pedestrian and road units, in highly

congested areas. The end-to-end (E2E) latency and velocity

with which information propagates to distant vehicles are

key performance indicators of such system. Device-to-device

(D2D) plays a similar role in emergency management systems.

Another key technology introduced in 5G is the Internet

of Things (IoT). IoT allows to connect billions of phys-

ical devices around the world, all collecting, monitoring,

processing, and sharing data by relying on the ubiquity of
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wireless connectivity. However, since replenishing of many

of the IoT units is challenging, such units have severe energy

limitations posed by their limited battery capacity. To alleviate

this problem, machine-to-machine (M2M) communications is

being promoted as a tool to forward information across large

distances from end units to the core network via other agents,

which act as relays.

Without delay constraints, the maximal reliable communi-

cation rate—Shannon’s capacity [2, Ch. 7]—over a cascade of

a finite number of links interconnected by relays is equal to

the minimum of the individual link capacities.

However, less is clear about the error-probability exponent

(EE) at rates below the capacity in this setting, when the nodes

apply causal operations to their measurements. In fact, even

determining the EE of transmitting a single bit over a tandem

of binary symmetric channels is a challenging problem [3], [4],

which was only recently resolved by Ling and Scarlett [5], [6],

who showed that the EE of transmitting a single bit is equal

to the minimum of the corresponding individual EEs.

Moreover, when the number of links is commensurate with

the number of transmit time steps, even the capacity is not

known and depends on the ratio between the number of links

and transmit time steps, when the two grow to infinity. In fact,

even the maximal possible ratio in transmitting a single bit

with arbitrarily small error probability—termed Information

Velocity by Polyanskiy (see [3]; see also [7])—is yet to be

determined; the same term was used earlier by Iyer and Vaze

[8] in a related setting of spatial wireless networks, as well as

in other disciplines, e.g., in physics, in neuroscience, epidemic

spread in networks, and in marketing and finance. For packet-

erasure links, much work has been done on analyzing the

E2E delay of transmitted packets over multi-link networks for

various setting; see, e.g., [9]–[21] and the references therein.

For packet-based networks, the scaling of the E2E delay as

a function of the number of servers in cascade with various

service distributions (where the communications between links

is assumed to have zero delay and zero errors) was analyzed

in previous works: for deterministic arrival and service curve

models, deterministic min–plus algebra has been used to show

that worst-case E2E delays grow linearly in the number of

nodes [22]. Later, linear growth of E2E delay was shown

also for the case of stochastic arrival and service curves (see,

e.g., [23] for a survey of deterministic and stochastic service

curve models) using stochastic network calculus (see, e.g.,

[24]), while assuming that the service at different nodes is

statistically independent [25], [26].

In this work, we concentrate on in-order communication

over a cascade of packet-erasure links with acknowledgment

(ACK) feedback, depicted in Fig. 1. The erasures in each link

are assumed independent and identically distributed (i.i.d.).
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Fig. 1: Block diagram of the system model. Xi denotes the content of packet i.

For this setting, we derive upper and lower bounds on the

arrive-failure probability of a packet over r relays during N

time steps, namely, the probability of the E2E delay of a

packet to exceed an allowed delay threshold N . Beyond being

important on their own right, these bounds allow us, in turn,

to determine the fundamental limits of this problem where the

ratio between r and N is held constant:

● The information velocity (IV)—the maximal speed that

information can spread reliably across a cascade of links.

● The error exponent (EE)—The exponential decay of the

arrive-failure probability when r/N is below the IV.

While the scaling of the E2E delay was known to be linear

for independent service time, the IV constitutes the best exact

asymptotic scaling rate at which reliable communication may

be attained. Alternatively, the IV supplements and extends the

single-link capacity to multi-hop scenarios (see Sec. VII-A).

The EE further quantifies the exact exponential decay rate

when transmitting below the IV threshold.

To derive closed-form expressions for these quantities, we

focus on a simple (yet relevant) model of arrival and service.

While these results might be derived from existing bounds

on the arrive-failure probability for more general arrival and

service models, to the best of our knowledge, it is the first

time the IV and EE are explicitly described for a non-trivial

setting.

Interestingly, when considering pure queueing-theory sce-

narios, the independence assumption of service times is hard

to justify [27]. The problem formulation we suggest provides a

compelling justification for the independence assumption from

a communication prospective.

The rest of the paper is organized as follows. Secs. I-A and

II describe the used notation and the communication setup

that is treated in this work, respectively. Sec. III considers the

case of single-packet transmission: upper and lower bounds

on the arrive-failure probability are derived for homogeneous

links (all links having the same erasure probability), and the

IV and EE are determined for this setting in Sec. III-A;

this treatment is then extended to heterogeneous links in

Sec. III-B. The single-packet results are then elevated to a

stream of causally arriving packets to the transmitter by tools

from queueing theory in Sec. IV: first, for an i.i.d. Bernoulli

arrival process (equivalently, a process with i.i.d. geometric

interarrival times) in Sec. IV-A; the IV and the EE are then

shown to remain the same for any ergodic arrival process as

well as for deterministic interarrival times with the same arrival

rate, in Sec. IV-B. Numerical results are presented in Sec. V,

which confirm the usefulness of the derived theoretical results.

Sec. VI offers alternative plausible definitions of the IV, along

with extensions to single-packet communication without feed-

back (akin to the definition in [3]) and instantaneous links. The

paper is concluded by a discussion of the IV and Shannon’s

capacity, the in-order transmission assumption, and anytime

(and anywhere) reliability of networked control [28], [29].

A. Notation

N,Z, and Q denote the sets of natural, integeres, and rational

numbers, respectively, and [n] ≜ {1,2, . . . , n} denotes the

smallest n ∈ N natural numbers. ⌈⋅⌉ and ⌊⋅⌋ denote the floor and

ceiling operations, respectively. Vectors are denoted by bold-

faced letters (x). The standard n-simplex for n ∈ N is denoted

by ∆n ≜ {(x1, x2, . . . , xn+1)∣∑n+1
ℓ=1 xℓ = 1;xℓ ≥ 0, ℓ ∈ [n + 1]}.

log and exp denote the logarithm and exponentiation oper-

ations and are understood to the same base. We denote by

Hb (p) ≜ −p log p − (1 − p) log(1 − p) and D (p∥q) ≜ p log p

q
+

(1 − p) log 1−p
1−q

the binary entropy and the binary Kullback–

Leibler (KL) divergence, respectively, for p, q ∈ [0,1], with

the convention that 0 log 0 ≜ 0, 0 log 0
0
≜ 0, and log 1

0
≜ ∞.

We use standard o-notation; in particular, g(N) = o(N) and

f(N) = o(1) mean that lim
N→∞

g(N)/N = lim
N→∞

f(N) = 0.

II. COMMUNICATION SETUP

The communication model that we consider in this work is

detailed next and is depicted in Fig. 1.

Source Stream. We consider the transmission of a stream of

source packets, with packet i ∈ Z arriving at time Ai ∈ Z. We

further define the i-th interarrival time by Di = Ai −Ai−1.

Cascade of erasure links. We will consider cascades of r

independent links: The output of link i ∈ [r] servers as the

input to node i + 1. Node i transmits its received packets in

order over link i. At each time step, a transmitted packet by

node i over link i arrives to its destination with probability

1 − pi and is erased with probability pi ∈ [0,1). Arrived

packets are acknowledged meaning that node i knows when

its transmitted packet arrived successfully to node i+ 1 in the

previous time step; in case of an erasure, node i retransmits the

same packet over subsequent time steps, until it successfully

arrives to the next node (and acknowledged). The erasure

events over link i are assumed i.i.d.; the links’ independence

means that the erasure events across the different links are

mutually independent as well.

Departure Process. Denote by Bi the time at which source

packet i arrives to the end receiver (node r + 1). Clearly Bi ≥
Ai + r since each link causes a loss of at least one time unit.1

1See Sec. VI-D for the setting of “instantaneous links”.
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The following notions will be considered in this work.

Arrive-Failure Probability. Denote by N the allowed E2E

delay for each packet. Then, the arrive-failure probability is

defined as the probability of the E2E delay to exceed this

allowed value:

Pe (N) ≜ sup
i∈I⊆Z

Pr (Bi > Ai +N) , (1)

where I = {1} for single-packet transmission (Sec. III), I = Z
for steady-state multi-packet transmission (Sec. IV), and I ={1,2, . . .m},m ∈ N for (transient) m-packet transmission.

Information Velocity. Let r grow linearly with N at α ratio:

r = ⌈αN⌉ ,
such that the arrive-failure probability Pe (N) of (1) decays

to zero with N . The largest possible such α will be referred

to as the IV of this regime, and will be denoted by V⃗ . Or, put

mathematically, the IV is defined as

V⃗ ≜ sup{α > 0 ∣ r = ⌈αN⌉ , lim
N→∞

Pe (N) = 0} . (2)

Error Exponent. Define the exponential decay rate—or sim-

ply the error exponent (EE)—of the arrive-failure probability

(1) for α < V⃗ by (we will prove that the limit exists)

E ≜ lim
N→∞

− 1

N
logPe (N) . (3)

Goal. Our goal in this work will be to derive tight bounds

on the arrive-failure probability (1) and to determine its (exact)

EE E and the corresponding IV V⃗ .

To that end, we will first treat the transmission of a single

packet—corresponding to λ = 0—in Sec. III, and then elevate

this treatment to λ > 0 in Sec. IV.

III. SINGLE-PACKET TRANSMISSION

In this section, we treat the case of communicating a single

packet which is available to the transmitter at time A = 1.2

Consider first the setting of a single link r = 1. The arrive-

failure probability (1) in this case is given by

Pe (N) = pN = exp{−N ⋅ (− log p)} ,
meaning that the (two-codeword [30, Ch 5.3]) EE is E =− log p (and meets the sphere-packing bound [30, Th. 5.8.1]).

Consider now the setting of r links. The rest of the section

will be devoted to the analysis for the setting of r links. To that

end, we will make use of the following definitions. Denote by

ti the time of arrival of the packet at node i+1 (over link i) for

i ∈ [r], and set t0 = 0. Denote further the delay caused by link

i ∈ [r] by τi = ti − ti−1. Clearly, {τi∣i ∈ [r]} are independent

and geometrically distributed with τi having mean 1/(1− pi).
The arrive-failure probability (1) is given, therefore, by

Pe (N) = Pr( r∑
i=1

τi > N) . (4)

Remark III.1. Unless otherwise stated, we consider the shifted

definition of the geometric distribution which counts the num-

ber of trials until the first success including the success. That

is, for a random variable X that is geometrically distributed

2We suppress the link index when r = 1.

with success probability q, Pr (X = k) = (1−q)k−1q for k ∈ N
and zero otherwise.

We first consider the special case of homogeneous links,

p1 = p2 = ⋯ = pr ≜ p (5)

in Sec. III-A, and treat the case of heterogeneous links in

Sec. III-B.

A. Homogeneous Links

We consider here the case of homogeneous links (5).

Theorem III.1. The IV (2) of transmitting a single packet over

independent homogeneous links (5) with erasure probability p

is equal to V⃗ = 1 − p, and the EE (3) for α < V⃗ is equal to

E = D (α∥1 − p). Moreover, the arrive-failure probability (1)

over r links across N time steps is bounded as

Pe (N) ≥ (1 − p)
√
N ⋅ exp{−N ⋅D ( r−1

N
∥1 − p)}√

8(r − 1)(N − r + 1) ; (6a)

Pe (N) ≤min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp{−(N − 1) ⋅D( r

N − 1∥1 − p)} ,

(1 − p)√N√
2π(r − 1)(N − r + 1) ⋅

exp{−N ⋅D ( r−1
N
∥1 − p)}

1 − exp{−D ( r−1
N
∥1 − p)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (6b)

for α ≜ r/N < V⃗ , and goes to 1 for α > V⃗ .

Proof: We first derive the IV.

lim
N→∞

Pe (N) = lim
N→∞

Pr(1
r

r∑
i=1

τi > N

⌈αN⌉) (7a)

= {0, E [τ] < 1
α

1, E [τ] > 1
α

; (7b)

where (7a) follows form substituting r = ⌈αN⌉ in (4), and (7b)

follows from the (weak) law of large numbers; recalling that

E [τ] = 1/(1 − p) completes the derivation of V⃗ .

We now prove the bounds in (6) for α = r/N < 1 − p = V⃗ .

We start with proving the first upper bound in (6b):

Pe (N) ≤ exp{− sup
λ>0
{(N − 1)λ − r logE [exp{λτ}] }} (8a)

≤ exp{− sup
x>1
{(N − r − 1) logx + r log 1 − px

1 − p }} (8b)

= exp{−(N − 1) ⋅D( r

N − 1∥1 − p)} (8c)

where (8a) follows from applying Chernoff’s upper bound to

(4), (8b) holds by substituting the moment-generating function

of a geometric distribution and x ≜ exp{λ}, and (8c) holds

for the maximizer x = N−r−1
p(N−1)

. Moreover, this bound is known

to be exponentially tight by Cramér’s theorem [31, Ch. 2],

meaning that the EE is E = D (α∥1 − p).
We now move on to proving the remaining upper and lower

bounds. Since {τi} are i.i.d. geometric with success probability

1−p, the arrive-failure probability may be expressed as follows.

Pe (N) = ∞∑
j=N+1

(j − 1
r − 1)(1 − p)rpj−r.
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Using standard bounds on the binomial coefficient for n ∈ N,

k + 1 ∈ [n] [32, Ch. 4.7]:

1

2
≤ (n

k
) exp{−nHb (k

n
)}
√

2k(n − k)
n

≤
√

1

π
,

we obtain the upper bound

Pe (N) ≤ (1 − p) ∞∑
ℓ=N

√
ℓ ⋅ exp{−ℓ ⋅D ( r−1

ℓ
∥1 − p)}√

2π(r − 1)(ℓ + 1 − r)
≤(1 − p)

√
N ∑∞ℓ=N exp{−ℓ ⋅D ( r−1

N
∥1 − p)}√

2π(r − 1)(N + 1 − r)
= (1 − p)√N√

2π(r − 1)(N − r + 1) ⋅
exp{−N ⋅D ( r−1

N
∥1 − p)}

1 − exp{−D ( r−1
N
∥1 − p)} ,

and the lower bound

Pe (N) ≥ (1 − p) ∞∑
ℓ=N

√
ℓ ⋅ exp{−ℓ ⋅D ( r−1

ℓ
∥1 − p)}

2
√
2(r − 1)(ℓ + 1 − r)

≥
√
N ⋅ (1 − p) ⋅ exp{−N ⋅D ( r−1

N
∥1 − p)}√

8(r − 1)(N − r + 1) .

Finally, to derive the EE, set r = ⌈αN⌉ in these bounds and

take N to infinity to arrive at E = D (α∥1 − p).
r that grows sublinearly with N results in α = 0. Substitut-

ing this in Th. III.1 yields the following immediate result.

Corollary III.1. For r = o(N), the EE is equal to that of a

single link: E = − log p.

B. Heterogeneous Links

We now treat the more general case of heterogeneous links.

For simplicity, we concentrate on the case of links having

one out of S ∈ N possible (different) erasure probabilities:

P (i) ∈ [0,1) for i ∈ [S], and denote the possible erasure-

probabilities vector by P ≜ (P (1), P (2), . . . , P (S)).
As we show next, the IV and the EE depend on the

channel type, i.e., on the fraction of channels with a spe-

cific erasure probability rather than on the assignment of

specific erasure probabilities to specific channel. Denote by

p ≜ (p1, p2, . . . , pr) the sequence of channel erasure prob-

abilities, and by R(i) the number of links with erasure

probability P (i) for i ∈ [S], i.e., the number of components

in p that are equal to P (i). Define further the channels-

type Qp ≜ (Qp(1),Qp(2), . . . ,Qp(S)) of the sequence p

via Qp(i) ≜ R(i)/r ∈ Q ∩ [0,1]. Clearly ∑S
i=1R(i) = r,

or equivalently, Qp ≜ (Qp(1),Qp(2), . . . ,Qp(S)) ∈ ∆S−1,

where ∆n is the standard n-simplex defined in Sec. I-A. The

set of all channels-types with denominator r and alphabet [S]
is denoted by Qr ≜ {Q ∈∆S−1∣rQ(i) + 1 ∈ [r + 1], i ∈ [S]}.
We denote by T (i) a geometrically distributed RV with

success probability 1 − P (i) for all i ∈ [S].
We will consider two settings:

● A fixed-type setting: Q ∈ QS ∩∆S−1 is fixed.

● a probabilistic setting: p comprises i.i.d. samples accord-

ing to Q̃ ∈∆S−1.

We will concentrate on determining the IV and EE; bounds

on the arrive-failure probabilities are derived inside the prove

of the remaining theorems in this section but are not explicitly

stated in the theorems themselves due to a lack of space.

Consider first the fixed-type setting.

Theorem III.2. The IV of a cascade of links with a fixed

channels-type Q ∈ QS ∩ ∆S−1 over a possible erasure-

probabilities vector P ∈ ∆S−1 equals V⃗ = (∑S
i=1

Q(i)
1−P (i)

)−1.

Furthermore, for r = ⌈αN⌉, the error probability goes to 1

for α > V⃗ , while for α < V⃗ , the EE Efixed(Q) is given by

Efixed(Q) = (1 − α) logx + α S∑
i=1

Q(i) log 1 − P (i)x
1 − P (i) , (9)

where x is the solution of the equation

S∑
i=1

Q(i)
1 − P (i)x =

1

α
(10)

that lies in the interval (1,1/min(P)). Alternatively, the EE

may be calculated via the optimization

Efixed(Q) = min
U∈∆S−1 ∶

U(i)≥
αQ(i)
1−P (i)

∀i∈[S]

S∑
i=1

U(i)D(αQ(i)
U(i) ∥1 − P (i)).

(11)

Proof: Again, we start by deriving the IV.

lim
N→∞

Pe (N) = lim
N→∞

Pr
⎛
⎝

S∑
i=1

R(i)
r
⋅ 1

R(i) ∑
ℓ∶pℓ=P (i)

τℓ > N

r

⎞
⎠

= {0, ∑S
i=1Q(i)E [T (i)] > 1

α

1, ∑S
i=1Q(i)E [T (i)] < 1

α

;

where the first equality follows from (4) and the definition of

R(i) and the law of large numbers, and the second equality

follows from the definition of Q; substituting E [T (i)] =
1/ (1 − P (i)) completes the derivation of V⃗ .

We now prove the first characterization of the EE (9).3

Pe (N) ≤ inf
λ>0

∏S
i=1 (E [exp{λT (i)}])R(i)

exp{λ(N − 1)} (12a)

≤ exp{ − sup
x>1
{((1 − α)N − 1) logx

+ r S∑
i=1

Q(i) log 1 − P (i)x
1 − P (i) }} (12b)

where (12a) follows from applying Chernoff’s upper bound to

(4) and the mutual independence of the RVs in {τℓ}, and (12b)

holds since T (i) is geometrically distributed with success

probability 1 − P (i) and by substituting x = exp{λ}.
Now, standard calculus shows that the maximizer of the

optimization in (12b) satisfies ∑S
i=1

Q(i)
1−P (i)x

= (1−α)N−1+r
r

.

Furthermore, this bound is exponentially tight by the Gärtner–

Ellis theorem [31, Ch. 2.3].

We next prove the alternative characterization of the EE (11)

by bounding the arrive-failure probability as follows.4

Pe (N) ≤ ∑
U∈Qr

Pr
⎛⎝ ∑
ℓ∶pℓ=P (i)

τℓ ≥ NU(i),∀i ∈ [S]⎞⎠ (13a)

3Assume N is large enough such that (1 − α)N > 1.
4Assume that N is large enough such that the first argument of the KL

divergence is lower than or equal to 1.
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= ∑
U∈Qr

S∏
i=1

Pr
⎛⎝ ∑
ℓ∶pℓ=P (i)

τℓ ≥ NU(i)⎞⎠ (13b)

≤ (αN + 2)S ⋅ exp⎧⎪⎪⎨⎪⎪⎩ − min
U∈Qr ∶

U(i)≥αN+1
N

⋅
Q(i)

1−P (i)
+

2
N

S∑
i=1

{(NU(i) − 2)

⋅D( rQ(i)
NU(i) − 2∥1 − P (i))}

⎫⎪⎪⎬⎪⎪⎭ (13c)

where (13a) follows from applying the union bound to (4);

(13b) holds by the independence of {τℓ}; and (13c) follows

from Th. III.1,5 and from the bound on the number of types

of sequences of a given length [2, Ch. 11.1].

Similarly, Pe (N) may be bounded from below by

Pe (N) ≥ max
U∈Qr

S∏
i=1

Pr
⎛⎝ ∑
ℓ∶pℓ=p(i)

τℓ > NU(i)⎞⎠ (14a)

≥ max
U∈Qr ∶

U(i)≥
αQ(i)− 1

N
1−P (i)

S∏
i=1

(1 − P (i))√NU(i)√
8 (R(i) − 1) (NU(i) + 1 −R(i))

⋅ exp{−NU(i) ⋅D(R(i) − 1
NU(i) ∥1 − P (i))}(14b)

≥
exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−N min

U∈Qr ∶

U(i)≥
αQ(i)
1−P (i)

∑S
i=1U(i)D(αQ(i)− 1

N

U(i)
∥1 − P (i))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭(1 −max(P))−S ⋅ (N + 1)S (14c)

where (14a) follows from (4) and the independence of {τℓ},
and (14b) follows from (6a).

Since ⋃∞r=1Qr = Q∩ [0,1] is dense in [0,1], by taking the

limit N →∞, we attain (11).

Corollary III.2. For r = o(N), the EE is equal to that of the

worst link: E = − logmin(P).
Remark III.2. We have derived two different expressions for

the EE in (9) and (10), and have proved implicitly that they

are equal. Using the Karush–Khun–Tucker conditions and

convexity arguments [33, Ch. 5.5] one may verify explicitly

that the solution of (10) yields (9).

For the probabilistic setting, the following result holds.

Theorem III.3. The IV of a cascade of links with i.i.d. erasure

probabilities according to Q̃ ∈∆S−1 over a possible erasure-

probabilities vector P ∈ ∆S−1 equals V⃗ = (∑S
i=1

Q̃(i)
1−P (i)

)−1.

Furthermore, for r = ⌈αN⌉, the error probability goes to 1

for α > V⃗ , while for α < V⃗ , the EE Eprob(Q̃) is given by

Eprob(Q̃) = (1 − α) logx − α log( S∑
i=1

Q̃(i) 1 − P (i)
1 − P (i)x) , (15)

where x is the solution of the equation

S∑
i=1

Q̃(i) ⋅ {1 − P (i)} ⋅ 1 − α − P (i)x(1 − P (i)x)2 = 0
5We use the first term in (6b) since the second term explodes for α = 1−p.

That said, since the second term bounds a probability from above, one may
always take the minimum between it and and 1 to and use this bound in (13c).

that lies in the interval x ∈ (1,1/min(P )). Alternatively, the

EE may be calculated via the optimization

Eprob(Q̃) = min
Q∈∆S−1

{Efixed(Q) + αD (Q∥Q̃)} , (16)

where Efixed is given in Th. III.2.

Proof: Since {τi∣i ∈ [r]} are i.i.d. Geometric mixtures:

Pr (τ = ℓ) = S∑
i=1

Q̃(i)P (i)ℓ−1(1 − P (i)),
V⃗ may be derived as in (7) by plugging in

E [τ] = S∑
i=1

Q̃(i)
1 − P (i) .

Moreover, the first characterization of the EE (15) can be

derived as in the first derivation of the EE in the proof of

Th. III.1: Since the error probability is given by (4), the

optimal EE according to Cramér’s theorem [31, Ch. 2] is given

by

Eprob(Q̃) = sup
λ>0
{λ − α logE [exp{λτ}]} ,

which can be shown to equal to (15) by standard calculus.

To derive the the second characterization of the EE (16),

we bound the error probability from above as follows.

Pe (N) = ∑
Q∈Qr

Pr( r∑
i=1

τi > N ∣Qp =Q)Pr (Qp =Q) (17a)

≤ ∑
Q∈Qr

exp{−N (Efixed(Q) + o(1))} exp{−rD (Q∥Q̃)}(17b)

≤ (r + 1)S exp{−N min
Q∈Qr

{Efixed(Q) + αD (Q∥Q̃) + o(1)}},
(17c)

where (17a) follows from applying the law of total probability

to (4), (17b) follows from Th. III.2 (and its proof) and [2,

Thm. 11.1.4], and (17c) follows from [2, Thm 11.1.1].

Similarly, we bound the error probability from below by

Pe (N) = ∑
Q∈Qr

Pr( r∑
i=1

τi > N ∣Qp =Q)Pr (Qp =Q)
≥ exp{−N minQ∈Qr

{Efixed(Q) + α + o(1) +D (Q∥Q̃)}}(r + 1)S
where the inequality follows from Th. III.2 (and its proof) and

[2, Thm. 11.1.4].

Since ⋃∞r=1Qr = Q∩ [0,1] is dense in [0,1], by taking the

limit N →∞, we attain (16).

Remark III.3. Similarly to Rem. III.2, we have derived two

different expressions for the EE in (15) and (16), and have

proved implicitly that they are equal. Using the Karush–Khun–

Tucker conditions and convexity arguments [33, Ch. 5.5] one

may verify explicitly that the solution of (16) yields (15).

For a comparison of the EEs in the fixed-type and proba-

bilistic settings is available in Fig. 7 in Sec. VI-D.

IV. POSITIVE ARRIVAL RATE

In this section, we treat the general setting of λ > 0.
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Fig. 2: Block diagram of the system model: Queueing theory view.

Clearly, since the queueing time of the first packet at each

node—the time it waits before the node attempts to send it

over its link (before it is served)—is zero, the analysis and

results of Sec. III remain valid for this packet.

However, for each subsequent packet, the (mean) queueing

time increases due to earlier packets that have not been yet

served.6 That said, if

λ < 1 − pi, ∀i ∈ [r] (18)

the system is stable and reaches a steady state behavior (see,

e.g., [36]); if (18) is not satisfied for some i, then that queue

will grow indefinitely long, as will also the delay. We therefore

concentrate on analyzing the system in steady state assuming

(18) holds.

To that end, we appeal to results from queueing theory that

allow elevating the results of Sec. III to the setting of λ > 0
when the system reaches steady state.

Indeed the system model of Sec. II may be viewed as a

queueing scenario of a cascade of queues, as depicted in Fig. 2:

packets that arrive to a node before previous packets have

been successfully sent are queued in a buffer and are sent

in their order or arrival over the link. Since the successful

transmission events over each link are i.i.d. Bernoulli, each

link may be viewed as a server with i.i.d. geometric service

times. The queues are further independent, meaning that the

service times of different queues are mutually independent.

We will consider an input arrival process with i.i.d. geomet-

ric interarrival times in Sec. IV-A, and more general arrival

processes in Sec. IV-B.

A. IID Geometric Interarrival Times

We will adopt Kendall’s notation [37, Ch. 10]. Specifically,

we will denote by Geo/Geo/1 queues with an arrival process

with i.i.d. geometric interarrival times, and i.i.d. geometric

service times.

Since in our model, the input process has i.i.d. interarrival

times, the first queue is a Geo/Geo/1 queue.

The following theorem is the discrete-time counterpart of

the renowned Burke theorem [38], [39] for Geo/Geo/1 queues,

which is due to Hsu and Burke [36] (see also [37, Ch. 11.1],

[40]); the distribution of the waiting time—the elapsed time

between arrival to and departure from the queue—is due to

[41], [42, Cor. 2.2].7

6For analysis of the transient behavior, see [34], [35].
7We follow the convention that the waiting time includes both the queueing

time and the service time.

Theorem IV.1 ( [36], [41], [42, Cor. 2.2]). Assume a

Geo/Geo/1 queue with arrival rate λ in steady state and

geometric service time with success probability 1 − p. Then,8

1) The interarrival times of the departure process are i.i.d.

geometric with mean 1/λ.

2) The number of packets in the queue at time t is indepen-

dent of the departure process prior to time t.

3) For a particular packet, the waiting time is independent

of the departure process before its departure and is

geometrically distributed with success probability 1− p

1−λ
.

By Prop. 1 of Th. IV.1, for our cascade of stable independent

queues (see Fig. 2) in steady state, the arrival process to each

of them, being the departure process of the previous queue,

has i.i.d. geometric interarrival times with mean 1/λ, i.e., all

are Geo/Geo/1 queues. Moreover, by Prop. 3, the waiting time

of a particular packet in queue i is independent of the arrival

process to queue i (and therefore also to subsequent queues)

prior to the packet’s departure of queue i. Therefore, the

waiting times at the different queues are mutually independent.

The latter result, stated formally next, was first proved by

Reich [39], [43] for the continuous-time variant of the problem

(see also [37, Ch. 11.1]). A similar argument may be applied

with respect to Prop. 2.

Theorem IV.2 ([37, Ch. 11.1], [40]). Assume a cascade of

r independent queues in steady state, with queue i ∈ [r]
having a geometric service times of means 1/(1−pi), satisfying

(18). Assume further an input process with i.i.d. geometric

interarrival times of mean 1/λ. Then,

1) Each of the queues is Geo/Geo/1 with input arrival rate λ.

2) The number of packets in each of the queues at a given

time are mutually independent.

3) The waiting times of a packet in the different queues are

mutually independent and are geometrically distributed

with success probabilities 1 − pi

1−λ
for i ∈ [r].

Ths. IV.1 and IV.2 suggest that in our model of interest

of Sec. II, that each packet in steady state experiences the

same delays as if it were the only packet sent but with erasure

probabilities {pi/(1 − λ)∣i ∈ [r]} in lieu of {pi∣i ∈ [r]}. This

is formally state next.

Corollary IV.1. Consider the model of Sec. II with i.i.d.

geometric interarrivals with success (arrival) probability λ in

8Burke’s original paper [38] states only the first two properties. All the
three properties are proved by Reich [39]. We follow the exposition for both
M/M/1 and Geo/Geo/1 queues of Hui [37].
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steady state.9 Then, Th. III.1 (and in Corol. III.1) hold with p

replaced by p/(1−λ), and Ths. III.2 and III.3 (and Corol. III.2)

hold with P (i) replaced by P (i)/(1 − λ) for all i ∈ [S].
B. Stationary Ergodic & Deterministic Arrival Processes

Up until now we have concentrated on the setting of i.i.d.

geometric interarrival times. We now move to treating more

general arrival processes. To that end, we use a result of

Mountford and Prabhakar [44] for continuous-time processes

that may be adopted also to discrete-time processes [40,

Sec. II].

Theorem IV.3. Assume a cascade of r i.i.d. queues in

steady state with geometric service times with mean 1/(1−p)
satisfying (18). Assume further a stationary ergodic arrival-

time process of mean 1/λ. Then, in the limit of r → ∞,

the departure process of the last queue has i.i.d. geometric

interarrival times of mean 1/λ.

The following corollary extends the result of the last the-

orem to independent queues with different service rates; its

proof is a straightforward adaptation of the proof for i.i.d.

queues and is therefore omitted.

Corollary IV.2. Assume a cascade of r independent queues

in steady state, with queue i ∈ [r] having a geometric service

time with mean 1/(1 − pi), satisfying (18). Assume further a

stationary ergodic arrival-time process of mean 1/λ. Then, in

the limit of r → ∞, the departure process of the last queue

has i.i.d. geometric interarrival times with mean 1/λ.

Although a process with deterministic interarrival times is

not stationary ergodic, the results of Th. IV.3 and Corol. IV.2

readily apply to such processes as well. Again, since the proof

for deterministic interarrivals is a simple adaptation of the

proof of Th. IV.3, we omit it in the interest of space.

9 This means in turn that (18) is satisfied for each link individually, i.e., for
p in the homogeneous-links case (5), and for P (i) in the heterogeneous-links
case for all i ∈ [S].

Corollary IV.3. Assume a cascade of r independent queues

in steady state, with queue i ∈ [r] having a geometric service

time with mean 1/(1 − pi), satisfying (18). Assume further a

process with deterministic interarrival times 1/λ ∈ N. Then,

in the limit of r →∞, the departure process of the last queue

has i.i.d. geometric interarrival times of mean 1/λ.

Cors. IV.2 and IV.3 imply that the IV and the EEs of

Corol. IV.1 remain the same for any stationary ergodic in-

terarrival process having the same average arrival rate λ as

well as for processes having deterministic interarrival times.

Corollary IV.4. Consider the model of Sec. II with a sta-

tionary ergodic arrival process of arrival rate λ or with a

process with deterministic interarrival times 1/λ ∈ N, in steady

state.9,10 Then, the expressions for the IV and the EE of

Th. III.1 (and Corol. III.1) hold with p replaced by p/(1−λ),
and Ths. III.2 and III.3 (and Corol. III.2) hold with P (i)
replaced by P (i)/(1 − λ) for all i ∈ [S].

V. NUMERICAL RESULTS

Consider first the homogeneous-links setting (5). Fig. 3

depicts the IV for a stream of packets versus the arrival rate λ

for several values of p. Interestingly, this figure shows that for

reasonable erasure probabilities, in case of a low IV, a modest

reduction in the arrival rate increases the IV substantially,

which is explained by the V⃗ being a shifted negative-sign

hyperbolic function of (1 − λ).
Next, we examine the empirical arrive-failure ratio for i.i.d.

geometric interarrival times with rate λ = 0.5 and p = 0.01, for

which V⃗ = 0.98. Fig. 4 depicts the empirical Pe and the bounds

on Pe of Th. III.1 (with the extension of Corol. IV.1 for λ > 0)

against N for α = 0.96 and p = 0.001. It shows that the lower

bound is rather tight at least for these (and other) parameters.

Fig. 5 depicts the empirical Pe and the lower bound on Pe of

Th. III.1 (with the extension of Corol. IV.1 for λ > 0) against

α for several values of r; for each r, we change α = r/N
10The result holds also for a deterministic arrival process with arrivals at

⌊i ⋅ a⌋ times for a fixed a ∈ Q, a > 1 and all i ∈ Z.
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(c) Gilbert–Eliott arrival process with γ = 0.01,
β = 0.1, ε = 0.45.

Fig. 6: Arrive-failure ratio as a function of α for λ = 0.5 P = (0.01,0.1), Q = (0.5,0.5) for different number of relays r, and

different arrival processes.

by varying N . The simulations were carried for 106 packets

with only the last 105 packets used for the evaluation, for

which the system has reached steady state. This figure nicely

demonstrates that the arrive-failure probability approaches a

step function at V⃗ as the number of relays grows. Furthermore,

the empiric curves concentrate around Pe = 0.5 at V⃗ .

Next, we depict in Fig. 6, the empirical arrive-failure

ratio for heterogeneous links in the fixed-type settings with

P = (0.01,0.1) and Q = (0.5,0.5) for three different arrival

processes, all of arrival rate λ = 0.5:

(a) Geometric i.i.d. interarrival times with success (arrival)

probability 0.5.

(b) Deterministic interarrival times with an arrival every other

time step.

(c) Gilbert–Eliott [45], [46] arrival process with γ = 0.01, β =
0.1, ε = 0.45—a two-state Markov model comprising a

good state at which a packet arrives with probability ε,

and a bad state at which a new packet always arrives. γ

and β are the transition probabilities from the good state to

the bad state and vice versa.11 The stationary probability

of arrival equals
β

β+γ
⋅ ε + γ

β+γ
.

According to Th. III.2 with its extensions of Cors. IV.1 and

IV.4 to λ > 0, the IV is equal to V⃗ ≈ 0.881. Again, the

simulations were carried for 106 packets with only the last

105 packets used for the evaluation, for which the system

has reached steady state. All three arrival processes exhibit a

similar behavior, with their respective empirical arrive-failure

ratio curves approaching a step function at the V⃗ as the number

of relays increases. And again, as in the homogeneous case,

the curves concentrate around Pe = 0.5 at V⃗ , for each of the

arrival processes.

VI. EXTENSIONS AND RELATED SETTINGS

A. Alternative Definitions of the Information Velocity

In this work, we have defined the IV as the maximum

fraction of links that a packet may traverse with each additional

11The Gilbert–Eliott model was originally used to model bursts of errors.
Here, we use this model for bursts of arrivals and hence the somewhat
confusing state names.

time step such that the error probability decays to zero. This

definition is important for setups of given number of relays and

communication time. Furthermore, this definitions of the IV

readily applies to physical channels (additive Gaussian noise

channels, channels with errors, etc.); see also Sec. VI-C.

Nevertheless, for packet-based communication other defini-

tions of the IV are plausible, if one allows r or N to vary:

1) Assume N is given and one wishes to determine the

expected number of relays that a packet traverses within

N time steps. Then, the IV can be naturally defined as

V⃗ = E [r] /N . This definitions is appropriate for situation

when one wishes to find the speed (or velocity) with

which information spreads in a line network.

2) Assume now the opposite case of a given number of

relays r that a packet needs to traverse, and the IV

V⃗ = r/E [N].
Indeed, all three definitions, the two listed here and the

original one of (2) coincide in the limit of N →∞. Moreover,

the limit is not needed for the two alternative definitions

for i.i.d. geometric interarrival times (or for single-packet

transmission).

B. Heterogeneous Link-Type Patterns

We have limited the number of possible erasure probabilities

to S < ∞. However, the results of Th. III.3 and their adaptation

to λ > 0 of Cors. IV.1 and IV.4 may be extended to a

continuum of possible erasure probabilities and probability

density functions Q̃, as well as for memory between the

components of p, using large deviations theory [31]. For

further details, see [47].

C. Single-Packet Information Velocity Without Feedback

Polyanskiy (see [3]; see also [7]) defined the IV in a similar

fashion to (2) for single-bit transmission over a cascade of

binary symmetric channels without feedback.

Interestingly, the proposed treatment in this work readily

applies to single-packet (or bit) transmission over a cascade of

binary erasure channels without feedback as well. For further

details, see [47].
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Fig. 7: The EEs in natural base of Ths. III.2 and III.3 for

Q = Q̃ = (0.5,0.2,0.3) and P = (0.2,0.5,0.7), along with

their instantaneous counterparts.

D. Instantaneous Links

In this work, we assumed that each link causes a delay

of at least one time unit. Yet, one may consider a setup in

which the links are “instantaneous”, in which no such delay is

incurred. Although this seems like an ill-modeled setup in the

presence of ACKs, it might be plausible under the framework

of Sec. VI-C.

For this setup, τi in (4) are distributed according to a non-

shifted geometric distribution, i.e., a distribution that counts

only the failures until the first success not including the success

(cf.. Rem. III.1). Thus, the bounds in (6) of Th. III.1 hold true

by replacing N with N + r [which for a fixed α, is equal to(1+α)N up to rounding errors], and the adaptation of all the

results of Sec. III is straightforward. In particular, the IV and

the EE in the homogeneous-links setting become V⃗ = 1−p
p

and

E = (1 + α)D ( α
1+α
∥1 − p), respectively. Note that V⃗ > 1 for

p < 1/2, meaning that more than N (instantaneous) links may

be traversed within N time steps.

We compare the EE of Th. III.2 with channels-type Q =(0.5,0.2,0.3), and the EE of Th. III.3 for Q̃ = (0.5,0.2,0.3),
both for P = (0.2,0.5,0.7); for these parameters, V⃗ ≈ 0.49.

We further compare them to their instantaneous counterparts,

for which V⃗ ≈ 0.98. The four EEs are depicted in Fig. 7.

VII. DISCUSSION

A. Single Packet Over r Links vs. r Packets Over One Link

The setting of Sec. III-A of single-packet transmission over

a cascade of r homogeneous links across N time steps is

mathematically equivalent to transmitting r packets over a

single link (with feedback) during N time steps.12 Since the

capacity of the latter is known to be 1 − p packets per time

unit (with or without feedback, since the link is memoryless),

this view allows to recover the IV of Th. III.1.

However, for the two settings for heterogeneous links of

Sec. III-B, the analogy becomes somewhat peculiar: Consider

the probabilistic setup of Th. III.3. In the analogous r-

packets single-link setting, the erasure probability is chosen

independently at the beginning of transmission (service) of

12More generally, one may show that transmitting m packets over r links
is mathematically equivalent to transmitting r packets over m links during
the same amount of time.

each packet, but remains fixed during the entire transmission

of this packet and until it is successfully conveyed to the

receiver. The capacity of this setting (which is equal to the IV

of Th. III.3) is different from the capacity of a link with i.i.d.

erasures across all time steps (in-fact all packets), regardless

of the success or failure events in previous time steps, which

is equal to 1 −∑iQ(i)P (i) = ∑i(1 −Q(i))P (i).
In fact, by simple convexity arguments the capacity of the

r-packets–single-link setting can be shown to be lower than

the that of single-packet–r-links setting. The explanation for

this is reminiscent of the waiting-time paradox: In the former

case, once a large erasure probability is selected it takes a

long time until a success, i.e., until a low erasure probability

is selected, and vice versa; whereas in the latter case, no such

extra loss is incurred.

For a stream of packets, however, this analogy breaks down,

since the problem becomes two-dimensional by its nature with

respect to the arriving packets and to the traversed links.

B. Continuous-Time Processes

Since continuous-time processes can be viewed as limit

processes of discrete-time ones, the derived results in this work

can be adapted to a continuous-time setting with exponential

transmission time over each link. In fact, all the results from

queueing theory that were used in Sec. IV were originally

derived for continuous-time processes.

C. In-Order Transmission Assumption

We have assumed in-order transmission in all the relays.

This setting is appropriate when the relays do not know the

target delay or the number of relays to the end destination.

However, for better informed relays, breaking the in-order

assumption may improve performance. See, e.g., [47].

D. Anytime Anywhere Reliability

The exponential decay of the arrive-failure probability with

the elapsed time (delay) of each packet individually may be

reinterpreted as the anytime reliability property of Sahai and

Mitter [28], [29] (see also [48]–[50]) that is fundamental

in networked control systems, with the EE taking the role

of anytime EE of Sahai and Mitter, i.e., determining the

plant unstable eigenvalues that can be stabilized. Moreover,

in our setting of a cascade of multiple links, one may further

discuss anytime anywhere reliability by viewing the arrive-

failure probability at different start and end nodes. It would

be also interesting to extend these results to the setting without

feedback [28] (see also [49]–[51]); this is currently under

intensive scrutiny.

E. General Channels and Networks

It would be interesting to extend the IV notion to more gen-

eral communication links [5], [6] and more general networks

[7], [8]. A recent effort in this direction was made in [52].
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